پژوهه » مفاهیم و کلیات جامعه و نمونه در روش تحقیق
مفاهیم و کلیات جامعه و نمونه در روش تحقیق

از آنجا که در سرشماری تمام واحدهای جامعه باید شمارش شود این کار پرهزینه و وقت‌گیر خواهد بود. برای صرفه جویی در وقت و هزینه مجبوریم روش دیگری را بکار بریم. در اینجاست که اهمیت روش نمونه‌گیری آشکار می‌شود. در نمونه گیری معمولا نمونه کوچکی از جامعه را بررسی می‌کنیم و آن را برای کل جامعه تعمیم می‌دهیم. هر وقت تصمیم بگیریم که بوسیله بررسیهای نمونه‌ای اطلاعاتی را تهیه کنیم، فورا با دو مطلب مواجه می‌شویم: تعریف دقیق جامعه‌ای که علاقمند به مطالعه آن هستیم، و گزینش مشخصه یا مشخصه‌هایی که باید ثبت شوند. مفاهیم کلی برای نمونه گیری از قبیل جامعه، نمونه، سرشماری و… را برای ارائه دید کلی از روش نمونه گیری و مزایای آن در انجام بررسیهای آماری ضروری است معرفی شوند.

 

تعاریف

جامعه: در هر بررسی آماری ، مجموعه عناصر مورد نظر را جامعه می‌نامند. به عبارت دیگر ، جامعه مجموعه تمام مشاهدات ممکنی است که می‌توانند با تکرار یک آزمایش حاصل شوند به طور کلی جامعه عبارت است از مجموعه ای از افراد یا واحدها که دارای حداقل یک صفت مشترک باشند و تعریف جامعه آماری باید جامع و کامل باشد.
سرشماری: سرشماری از جامعه متناهی ، بررسی است که تمام واحدهای جامعه را دربرمی‌گیرد. در بسیاری از موارد ، اجرای سرشماری در یک جامعه متناهی ، کاری است شدنی.

نمونه: نمونه بخشی از جامعه تحت بررسی است که با روشی که از پیش تعیین شده است انتخاب می‌شود. به قسمی که می‌توان از این بخش ، استنباطهایی درباره کل جامعه بدست آورد انتخاب تعدادی از افراد٬ حوادث٬ و اشیاء از یک جامعه تعریف شده به عنوان نماینده آن جامعه . اولین قدم در نمونه گیری تعریف جامعه مورد نظر است و هدف نوعی نمونه گیری است که تمام افراد جامعه جهت انتخاب شدن شانس برابر داشته باشند.

انواع بررسیهای نمونه‌ای
بررسی توصیفی: در بررسی توصیفی ، هدف صرفا کسب اطلاعاتی درباره گروههای بزرگ است.
بررسی تحلیلی: در بررسی تحلیلی ، بین زیر گروههای متفاوتی از جامعه ، برای کشف تفاوتهای آنها مقایسه‌هایی صورت می‌گیرد و یا فرضهایی را درباره دلائل این تفاوتها عنوان کرده و مورد تحقیق قرار می‌دهند.

 

اهمیت و ضرورت نمونه گیری
پس از انتخاب موضوع تحقیق و بیان مسئله٬ یکی از تصمیمیات مهمی که در پیش روی هر پژوهشگری قرار دارد انتخاب نمونه است٬ نمونه ای که باید نماینده جامعه ای باشد که پژوهشگر قصد تعمیم یافته های تحقیق خود به آن جامعه را دارد.
اگر محقق پژوهش خود را بر تمامی افراد جامعه اجرا کند روش او سرشماری خواهد بود یعنی محقق باید تمامی افراد جامعه را تک تک مورد برسی و آزمون قرار دهد.
اما چون اکثر پژوهشگران توان و زمان اجرای پژوهش بر کل جامعه را ندارند به همین دلیل پژوهش خود را محدود به نمونه کوچکی می سازند.

 

تعیین حجم نمونه
هر چه حجم یا اندازه نمونه بزرگتر باشد میزان اشتباهات در نتیجه گیری کم میشود و بر عکس هر چه تعداد نمونه محدود باشد مقدار اشتباهات زیادتر است٬ بنابر این زمانی که محقق سطح بالاتری از اطمینان یا معنی دار بودن آماری را ملاک ارزیابی اطلاعات تحقیق خود قرار میدهد لازم است حجم نمونه او بزرگتر انتخاب شود.
لذا اگر هر عضو در جامعه مادر دقیقا مشابه عضو دیگر باشد آنگاه انتخاب نمونه ای با حجم یک عضو هم کافی است. حجم نمونه باید به اندازه ای باشد که نتایج حاصل عینا با نتایج همان مطالعه در جامعه ای که نمونه از آن انتخاب شده است برابر باشد.

 

در شرایط ذیل انتخاب نمونه با اندازه بزرگ ضروری است :
.۱- زمانی که در تحقیق متغیرهای کنترل نشده زیادی وجود دارند.
۲- هنگامیکه پیش بینی تفاوت یا همبستگی پایین است. در تحقیقاتی که انتظار داریم برای گروههای مختلف تفاوت اندکی در متغیر وابسته بدست آوریم٬ یا در مطالعاتی که به منظور تعیین ارتباط صورت می گیرند و همبستگی پایین مورد انتظار است.
۳-زمانی که گروههای انتخاب شده باید به زیر گروههای دیگری تقسیم شوند.
۴- زمانی که جامعه مورد نظر بر اساس متغیر های مورد مطالعه نامتجانس است. اگر کاملا شبیه هم باشند انتخاب نمونه ای با حجم یک نفر کافی است.
۵- زمانی که وسیله پایایی برای اندازه گیری متغیر وابسته وجود ندارد. پایایی ابزار اندازه گیری بدان معنا است که هر گاه این ابزار در شرایط و زمانهای مختلف بکار رود٬ آزمودنی های یکسان دارای نمره های مشابهی گردند.

 

ارتباط حجم نمونه با فرضیه پوچ (صفر یا آماری)
همانطوریکه گفته شد حجم نمونه را باید تا حد امکان بزرگ انتخاب کرد زیرا حجم نمونه ارتباط بسیار نزدیکی با آزمون فرضیه پوچ در تحقیق دارد٬ بدین ترتیب که هر چه اندازه گروه نمونه بزرگتر انتخاب شود محقق با قاطعیت بیشتری فرض پوچ را که واقعا نادرست است رد میکند.
فرضیه پوچ٬ صفر یا آماری هدفی جزء رد تحقیق ندارد این فرض صریحا منکر وجود تفاوت یا رابطه و یا اثر بین دو یا چند متغیر است. به سخن دیگر این فرض گویای آن است که هر نوع تفاوت٬ رابطه یا اثر صرفا نتیجه وقایع اتفاقی یا خطاها و اشتباهات آماری و نمونه گیری است٬ به همین جهت محقق به آزمایش و آزمون این فرض می پردازد.

 

مزایای نمونه گیری
تقلیل هزینه و صرفه جویی در منابع مالی و هزینه: اگر داده‌ها فقط از نسبت کوچکی از توده جامعه تامین شوند مسلما هزینه تهیه آنها به مراتب کمتر از سرشماری است. در جامعه‌های بزرگ نتایجی که از طریقه نمونه گیری بدست می‌آیند آن قدر دقیق هستند که می‌توان آنها را به عنوان نتایج خود جامعه مورد استفاده قرار داد.
سرعت بیشتر و جلوگیری از اتلاف وقت محقق: چون حجم نمونه کمتر از حجم جامعه در سرشماری است، جمع آوری و تلخیص داده‌ها با سرعت بیشتر ، یعنی با وقت کمتری انجام می‌شود.
قدرت عمل بیشتر: در برخی از نمونه گیری‌ها که وجود افراد متخصص و آموزش دیده و همچنین وسایل اندازه گیری و انجام آزمونهای دقیق برای تهیه داده‌ها ضروری است مسلما به علت کمبود این امکانات ، انجام سرشماری عملا غیر ممکن است.
صحت عمل بیشتر: چون برای انجام یک نمونه گیری به دلیل حجم کار کمتر ، امکان آموزش افراد برای تهیه پرسشنامه و انجام مصاحبه‌ها وجود دارد، لذا صحت عمل در نمونه گیری بیشتر از سرشماری است.
حفظ واحدهای جامعه: در بعضی از جامعه‌ها امکان انجام سرشماری نیست و ناگزیریم برای بررسی مشخصه مورد نظر از نمونه گیری استفاده کنیم.

 

اشتباهات نمونه گیری
اشتباهات نمونه گیری از جمله عواملی هستند که ممکن است هر پژوهشگری در روند تحقیق خود مرتکب آن شود و به دو دسته زیر تقسیم میشوند :
۱- اشتباهات نمونه گیری
۱-۱- اشتباه ناشی از در دست نبودن فهرست کامل افراد جامعه
۱-۲- اشتباه ناشی از انتخاب معدودی از افراد جامعه
۱-۳- اشتباه ناشی از تحلیل آماری نامناسب
۲- اشتباهات غیر نمونه گیری
۲-۱-اشتباه ناشی از عدم مشاهده افراد مورد مطالعه که به دو دسته تقسیم میشوند : عدم پوشش و عدم پاسخ.
۲-۲-اشتباه ناشی از مشاهده نا دقیق که به سه دسته تقسیم میشوند : ابزار نادقیق٬ ثبت نادقیق داده ها و استخراج نامناسب.

 

خطای نمونه گیری
بین ویژگیهای یک نمونه و ویژگی های جامعه ای که نمونه از آن انتخاب میشود تفاوت وجود دارد. این تفاوت برای نمونه تصادفی قابل برآورد است و به آن خطای نمونه گیری گفته می شود. خطای نمونه گیری تابع اندازه حجم نمونه است هر چه اندازه نمونه کوچکتر باشد خطای نمونه گیری زیاد است.

 

انواع نمونه گیری تصادفی
نمونه گیری تصادفی بدون جایگذاری: یک ویژگی مهم نمونه گیری تصادفی ساده بدون جایگذاری این است که احتمال استخراج هر واحد مشخص از جامعه در هر استخراجی مساوی با احتمال استخراج آن واحد مشخص در استخراج اول است.
نمونه گیری تصادفی با جایگذاری: اگر در انتخاب n واحد نمونه ، پس از انتخاب هر واحد ، آن را به جامعه برگردانیم و انتخاب بعدی را انجام دهیم نمونه گیری تصادفی ساده را با جایگذاری می‌نامند. در این روش ، انتخاب هر واحد مستقل از انتخاب واحدهای دیگر است.